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A comparison between results of dielectrical relaxation and dynamic mechanical spectroscopies is carried
out for the �-relaxation of the ester dicyclohexyl methyl-2-methyl succinate �DCMMS�. The results for the
dielectric permittivity and the shear modulus measurements are presented according to the empirical Havriliak-
Negami �HN� equation. By using the time-temperature principle a master curve in each case was obtained for
several temperatures. The comparative analysis presented here is based on the assumption of a relationship
between rotational and shear viscosities. The former one is associated to the dielectrical relaxation, whereas the
latter is associated to mechanical relaxation. Both viscosities are not necessarily equal in general, and we
assume that the difference between them is an important factor to appropriately compare the dielectrical and
mechanical results.
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I. INTRODUCTION

The response function of dielectrical material to an oscil-
latory electric field is usually represented by the normalized
dielectric permittivity

R*��� =
�*��� − ��

�0 − ��

=
1

1 + i��D
* ���

. �1�

The quantities �0 and �� are the relaxed and unrelaxed
dielectric constant, respectively. To obtain an expression for
the complex relaxation time �D

* ���, DiMarzio and Bishop �1�
�DB� proposed a prescription in which the Debye rotational
frictional coefficient of a dipole particle is expressed in terms
of the shear viscosity. This means that the relaxation of the
electric polarization is governed by the same mechanism of
the stress relaxation. In that sense, the Maxwell model for
mechanical relaxation was used to represent the dielectric
relaxation in terms of shear stress relaxation time, which is
equal to the viscosity divided by the infinite frequency shear
modulus �G��, namely �D��s=�0 /G�. The second assump-
tion of the DB model is to keep valid the proportionality
between �D

* ��� and the shear viscosity �0
*��� for all frequen-

cies within the dielectrical relaxation domain. Therefore,

R*��� =
1

1 + i�A�0
*���

�2�

where A is the DB coefficient given by

A =
4�r3

kT

�0 + 2

�� + 2
�3�

where r is the radius of the rotating dipole particles and k is
the Boltzmann constant.

The DB equation is a generalization of the Debye theory
�2�. The nonexponential decay of the dielectrical permittivity
or the skewed arc of the Cole-Cole plot is provided by the
frequency dependence on the dynamic viscosity. Considering
a value of the radius of the rotating unit, this equation is not
able to fit experimental data. However, it has been shown
that the DB model qualitatively describes the physics under-
lying the interrelation between viscoelastic and dielectric re-
laxation data �3�. Along these lines contribution papers have
considered the DB model in the same way as Eq. �2� �4–6�.

Recently, dielectrical and mechanical moduli have been
used in order to compare both type of measurements. Differ-
ent definitions of the dielectrical modulus have been used.
Christensen and Olsen have defined the electrical modulus in
terms of the inverse of the complex dielectric susceptibility
�7�.

Ge
*��� =

1

�*��� − 1
. �4�

Another definition of this modulus is given taking into ac-
count Ref. �8�, namely

Ge
*��� =

1

�*��� − ��

. �5�

The use of this equation leads to an inconsistency in the high
frequency limit, since the real and imaginary parts of this
electrical modulus diverge in this limit �→�. The same is
true for the shear compliance.

To avoid that problem, �� is replaced by �i. Here �i is
equal to the squared refraction index. However, in the com-
parison of the predicted modulus with mechanical measure-
ments, deviations are presented and further testing is neces-
sary �see Ref. �8��.

To obtain a further insight along these lines, we abandon
the purpose of making a comparison between shear moduli*Electronic address: rdiazc@ter.upv.es
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or taking the respective compliances as compare quantities.
We propose to compare viscosities with different physical
origin as are the shear and rotational ones. The aim of the
present paper lies in the understanding of the molecular re-
laxation in a viscous and supercooled liquid. That is, sepa-
rating the characteristics of the translational microscopic dif-
fusion from the microscopic rotational diffusion. In fact, it
has been assessed that the molecular rotation follows a dif-
ferent dynamic regime as the temperature is lowered toward
the glass transition, in particular, when a crossover dynamic
of fragile glass formers �9� is reached above the glass tran-
sition temperature around TC=1.2Tg. Several models and the
experimental results suggest that the decoupling between ro-
tational diffusion and viscosity is present together the hetero-
geneity dynamics �10�. This effect was related to the break-
down of the Debye-Stokes-Einstein �DSE� relation for the
translational diffusion coefficient �11,12�. The characteriza-
tion of this relation implies the diffusion coefficient scales
shear viscosity as a power law, with an exponent in the range
between zero and one, depending on the material �13,14�.

Following these findings, we propose to introduce a scal-
ing relationship between real and imaginary parts of the
shear and rotational viscosities. In this paper, we will try to
show that in making this assumption it is possible to find a
way to compare mechanical and dielectrical measuring.

II. THE HAVRILIAK-NEGAMI REPRESENTATION
FOR EXPERIMENTAL MECHANICAL

AND DIELECTRICAL DATA

The dielectrical and mechanical measurements were done
at the laboratory of N. B. Olsen in IMFUFA, Roskilde Uni-
versity Center, Denmark. The mechanical measurement were
carried out at different temperatures using a piezoelectric
transducer cell, enabling one to measure the complex shear
modulus in the frequency interval from 10−2 Hz to 102 kHz.
For the dielectrical measurement, a HP4192A impedance
analyzer was used in the same frequency interval. The ex-
perimental cell, temperature controller, and procedure to col-
lect data were described previously �15�. The glass transition
temperature Tg of this glass forming liquid is 220 K as pre-
viously reported �16�.

The complex dielectrical permittivity and mechanical
modulus were characterized employing the empirical
Havriliak-Negami �HN� equation �17�.

Thus, for dielectrical relaxation this model is given by

�* − ��

�0 − ��

=
1

�1 + �i��D���	 �6�

where � and 	 are the former parameters and �D represents
the relaxation time.

For the complex shear modulus the HN representation is
given by

Gs
* − Gs���

G0 − Gs���
=

1

�1 + �i��s�
�� �7�

where Gs��� is the unrelaxed shear modulus, G0 is the re-
laxed shear modulus, 
 and � are the former parameters, and
�s represents the relaxation time.

The HN parameters at different temperatures for dielectri-
cal and mechanical measurements are given in Tables I and
II, respectively.

The values of log10��D� and log10��s� versus inverse of
temperature are represented in Fig. 1. We observe that, inde-
pendently of temperature, the average shift between two
curves is about 0.6. This constant shift is associated to the
time delay between the mechanical and dielectric responses.

The time-temperature superposition principle can be ap-
plied to mechanical and dielectric results. Considering a spe-
cial frequency domain to avoid deviations of the data at high
frequencies, a master curve is obtained. Thus, in Figs. 2 and
3 we have represented �� ,��, G� and G� versus �aTf�, where
aT represents the temperature-dependent scaling factor for
the frequencies.

The dependence of aT with the temperature was analyzed
using the Williams, Landel, and Ferry �WLF� equation,

log�aT� =
− C1�T − T0�
C2 + �T − T0�

. �8�

TABLE I. Parameters of Havriliak-Negami equation for dielec-
trical measurements.

T �K� �� �0−�� � 	 �D �s�

218 2.110 4.780 0.82 0.50 3.9

220 2.140 4.650 0.85 0.48 1.0

222 2.160 4.520 0.84 0.48 2.3�10−1

224 2.200 4.530 0.85 0.48 1.0�10−1

226 2.210 4.520 0.84 0.48 3.2�10−2

228 2.179 4.456 0.90 0.41 8.0�10−3

230 2.162 4.441 0.92 0.40 2.8�10−3

232 2.168 4.410 0.91 0.39 1.1�10−3

234 2.147 4.403 0.92 0.38 4.5�10−4

238 2.114 4.380 0.91 0.38 1.1�10−4

242 1.942 4.496 0.93 0.34 2.8�10−5

246 1.485 4.895 0.94 0.29 8.0�10−6

TABLE II. Parameters of Havriliak-Negami equation for me-
chanical measurements.

T
�K�

10−8Gs���
�Pa�

10−8�Gs���−G0�
�Pa� 
 �

�s

�s�

208 8.88 8.88 0.92 0.29 7.9�10−1

220 8.71 8.70 0.96 0.26 2.3�10−1

222 8.39 8.41 0.91 0.28 5.7�10−2

224 8.27 8.29 0.90 0.27 1.7�10−2

226 8.15 8.17 0.91 0.26 5.9�10−3

228 8.47 8.48 0.92 0.23 2.3�10−3

230 8.38 8.38 0.93 0.22 9.2�10−4

232 8.50 8.50 0.92 0.21 3.7�10−4

234 8.87 8.87 0.93 0.19 1.7�10−4

238 8.89 8.91 0.89 0.19 3.6�10−5

DÍAZ-CALLEJA et al. PHYSICAL REVIEW E 72, 051505 �2005�

051505-2



The fitting parameters C1 and C2 are 11.5 and 54.3 for di-
electrical spectroscopy and 11.8 and 54.9 for mechanical
spectroscopy, at reference temperature �T0� of 228 K.

III. THE RELATIONSHIP BETWEEN ROTATIONAL AND
SHEAR VISCOSITIES

A. Rotational viscosity

Dynamic dielectrical permittivity of a condensed system
of molecules with permanent electric dipole moment can be
represented by the following equation �18�

R*��� =
1

1 −
�2

�T
2 + i�� �0 + 2

�� + 2
��R

*���
�9�

where �R
* is the rotational relaxation time, ���0+2� / ���+2��

is the field factor correction and �T is the resonance
frequency.

Now the inertial effects are neglected. This is due to the
fact that the dielectrical relaxation under study lies far from
resonance frequency, that is �T

2 �2. Then Eq. �9� is reduced
to �19�

R*��� =
1

1 + i�� �0 + 2

�� + 2
��R

*���
. �10�

The rotational relaxation time can be done in terms of the
complex rotational diffusion coefficient, defined via the
torques acting on a rotating sphere �20�. According to the
fluctuation-dissipation theorem it can be expressed as

�R
*��� =

1

2D*���
=

�*���
2kT

. �11�

Taking into account the situation of a large sphere within
a fluid and by using the continuum approach, the frictional
coefficient can be given by

� = 8�r3�0. �12�

It should be noted that Eq. �12� has been derived at a
macroscopic level. This means that this equation cannot be
necessarily applied on the length scale of molecular dimen-
sions, in which the rotational nature prevails. That is, the
frictional coefficient expresses the opposition of the sur-

FIG. 1. Temperature dependence of dielectrical ��� and me-
chanical ��� relaxation time.

FIG. 2. Master-type plot of the dielectrical measurement at
228 K, real part ��� and imaginary part ���.

FIG. 3. Master-type plot of the mechanicalal measurement at
228 K, real part ��� and imaginary part ���.
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rounding fluid to the rotational motion of the dipole particle.
This is produced by the torque induced by the interaction
dipole-electric field. The important point is that this shear
viscosity is not necessarily equal to the rotational one. In
particular, the frictional coefficient could depend on the
boundary conditions of the surrounding fluid �21,22�. This
should be the case of supercooled fluids near the glass tran-
sition temperature by considering that any dipole is inserted
in a cooperatively rearranging region. Therefore, Eq. �12�
should be modified to consider the rotational viscosity in-
stead of the shear viscosity �23� to give

�* = 8�r3�0
*. �13�

Substitution of Eqs. �13�, �11�, and �10� into Eq. �9� leads to

R*��� =
1

1 + i�A�rot
* ���

�14�

Here A is the same quantity as given in Eq. �2�. Equation
�14� is the modified DB equation, and therefore, the actual
viscosity related to the electric susceptibility might corre-
spond to the rotational one. The corresponding evaluation
from dielectrical measurements can be done by using the
next algorithm obtained from Eqs. �10� and �11�.

�rot
* ��� =

1

i�A
� 1

R*���
− 1� . �15�

At this point, it should be mentioned that the product
A�rot

* ��� corresponds to the second-order memory function,
whose properties are described elsewhere �16,24�.

B. The shear viscosity

The dynamic shear viscosity or the translational one is
obtained from the dynamic shear modulus by

�trans
* ��� =

Gs
*���
i�

. �16�

The real and imaginary parts of the dynamic shear viscos-
ity are given in terms of the frequency according to the fol-
lowing definition:

�trans
* ��� = �trans� ��� − i�trans� ��� . �17�

Preliminary calculation of the radius in Eq. �3� �unpublished
results� gives R=8 Å. From this value the parameter A can
be estimated given nearly 4.3·10−6�m3 /K·mol�.

Similarly, for the dynamic rotational viscosity one has

�rot
* ��� = �rot� ��� − i�rot� ��� . �18�

The evaluation of these functions is made by using ex-
perimental data in Eqs. �15� and �16�, and the results are
shown in Figs. 4 and 5. Real parts of dynamic viscosities
tend to be nearly constant at low frequency. These limiting
values are the zero-rotational rate �rot�0� and the zero-shear
rate �trans�0� viscosities. These values are reported as a func-
tion of the temperature in Table III. In the same way as in the
dielectric and mechanical results, the time-temperature su-
perposition principle is applied for zero-rotational rate and

zero-shear rate viscosities. The WLF equation for this case is
as follows

log10�aT�� =
�T�0�
�T0

�0�
=

− D1�T − T0�
D2 + �T − T0�

. �19�

The values of constants D1 and D2 are 11.9 and 54.2,
respectively, for zero-rotational rate viscosity and 11.5 and
53.4 for zero-shear rate viscosity at 228 K as reference tem-
perature. The values of log10�aT��rot�� and log10�aT��trans��
versus inverse of temperature are presented in Fig. 6.

Imaginary parts of dynamic viscosities are characterized
by the presence of maxima, which coincides with the end of
a relative plateau in the real part. The temperature depen-
dence of the shift of these curves can also be studied by
time-temperature superposition principle, Eq. �19�. The val-
ues of new constants D1 and D2 are, respectively, 12.6 and
56.7 for maximum rotational viscosity and 12.0 and 54.0 for
maximum shear viscosity at 228 K as reference temperature.
As we can see, the values of the constants D1 and D2 are

FIG. 4. Variation of real part of dynamic shear �open� and rota-
tional �solid� viscosity, ��� 226, ��� 228, ��� 230, and ��� 232 K.

FIG. 5. Variation of imaginary part of dynamic shear �open� and
rotational �solid� viscosity, ��� 226, ��� 228, ��� 230, and ���
232 K.
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very close for all the cases, and the same is true for dielec-
trical and mechanical master curves �see above�.

In the next section we compare the real and imaginary
parts of these viscosities.

C. Scaling relation between the rotational and shear viscosities

In order to introduce a scale relationship, we will consider
that the rotational diffusion is related to the shear viscosity
according to the DSE relation, namely

Drot =
kT

6�d3

1

�rot
�20�

and

�rot = �0. �21�

These equalities are adequate for spherical particles of
any radius rotating in a Newtonian fluid, as it is the prescrip-

tion of the DSE relationship. However, for dipoles of the
same size of the molecular fluid or dipoles in a viscoelastic
fluid, as it is in the case of a supercooled liquid under non-
ergodic conditions, these results for the DSE relation break
down. In this case, the relation between the rotational diffu-
sion and the shear viscosity can be formulated in terms of a
power law with a fractional exponent. A possible physical
picture is that the shear motion facilitates molecular jumps-
rotations over energy barriers according to the theory of rate
processes of Eyring �25�. Furthermore this effect has been
recognized as the decoupling of translational diffusion and
the relaxation, as a consequence of the dynamic heterogene-
ity �10,26�. Therefore, this decoupling modifies the DSE re-
lationship, and a fractional diffusion coefficient �27,28� was
suggested as valid in the temperature interval Tg�T
�1.2Tg �29�

Drot =
kT

6�d3� 1

�0
��

. �22�

The exponent in Eq. �22� depends on both the diffusing
particle and the fluid, with values in the range of 0���1.
This result suggests proposing a relationship between vis-
cosities in the following way:

�rot = B��0��. �23�

The generalization of this relationship for frequency-
dependent viscosities gives after splitting the real and imagi-
nary parts

�rot� ��� = B���trans� ��1, �24�

�rot� ��� = B���trans� ��2. �25�

These relationships can be verified using experimental data
considering the prescriptions of Eqs. �15� and �16�. Log10
−log10 plots for the real and imaginary parts of the rotational
viscosity versus the real and imaginary parts of the transla-
tional viscosity are shown in Figs. 7 and 8. In these figures
we can observe a linear part at high frequencies and a non-

TABLE III. Zero-rotational rate and zero-shear rate
viscosities.

T �K� A�rot� �0� �s� �trans� �0� �Pa s�

218 2.42�108

220 5.71�107

222 1.63�107

224 5.05�10−2 4.93�106

226 1.74�10−2 1.54�106

228 5.99�10−3 5.52�105

230 2.28�10−3 2.16�105

232 8.88�10−4 8.30�104

234 3.87�10−4 3.62�104

238 8.08�10−5 7.88�103

242 2.17�10−5 2.09�103

246 6.27�10−6 6.55�102

FIG. 6. Temperature dependence of the shift �aT� for ��� zero-
rotational rate viscosity, ��� zero-shear rate viscosity, ��� maxi-
mum of imaginary part of rotational viscosity, and ��� maximum of
imaginary part of shear viscosity.

FIG. 7. log10 real part of dynamic shear vs log10 real part dy-
namic rotational viscosity ���� 226, ��� 228, ��� 230, and ���
232 K�. Inset: linear behavior of relation between both viscosities.
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linear part at low frequencies. The slopes of the real and
imaginary parts of the viscosities give the fractional expo-
nents in a linear part of �1=0.84±0.01 and �2=0.72±0.01.
The fractional exponents and pre-exponential factors as a
temperature function are summarized in Table IV.

On the other hand, an alternative scaling relationship be-
tween the diffusion coefficient and the viscosity has been
proposed in �30�

Drot � � T

�0
��

. �26�

It leads to a scaling relationship between viscosities of the
form

�rot
0 = B���0

T
��

. �27�

However, this temperature contribution does not affect the
scaling-power parameter, but modifies the temperature de-
pendence of the B� coefficient. However, the analysis goes
on following the same form as we did above.

IV. DISCUSSION

We explore the possibility to convert electrical data ob-
tained in the dielectrical spectroscopy into mechanical spec-
troscopy data.

The procedure that we proposed is to look for a transfor-
mation between the dielectrical complex relaxation time
�D

* ��� and the corresponding shear relaxation time �s
*���. We

have shown that this transformation can be established by
considering a scaling relationship between the real and
imaginary parts of the rotational and shear viscosity. Accord-
ing to the analysis presented here, at least one new scaling
parameter is necessary in the formulation to get a quantita-
tive prediction starting with mechanical or dielectrical mea-
surements. We assume an interpretation of this scaling pa-
rameter related to the crossover dynamic regime in
supercooled liquids around the glass transition. The result
can be expressed in the form of the complex relaxation time

�D
* ��� = B���trans� �����1 − iB���trans� �����2. �28�

Here, the complex relaxation time is given in terms of the
real and imaginary parts of the complex shear viscosity,
which can be obtained from the complex shear modulus us-
ing Eq. �16�.

The relaxation time in Eq. �28� reduces to the DB form if
�1=�2=1, which is the case when the Debye relaxation time
is equal to the shear relaxation. Then according to Eq. �2� the
coefficients B�=B� and equal to A.

Apparently, from the results presented here, it seems that
the values of the scaling parameters �1 and �2 do not equal
each other, and their difference should be temperature depen-
dent without a violation of the causality principle in the
Kramers-Kronig formulation �see Appendix A�. However, to
establish this difference from experimental results is a matter
of future investigation and the conclusions presented here
need to be contrasted with data from a different glass form-
ing system.

Finally, theoretical models are lacking to evaluate the
scaling parameters. Similarly, it remains a physical explana-
tion of Eq. �28�.
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APPENDIX A: THE KRAMERS-KRONING RELATIONS
FOR DYNAMIC VISCOSITIES

The real and imaginary parts of the shear viscosity are
given by

�trans� ��� =
Gs����

�
, �A1�

�trans� ��� =
Gs����

�
. �A2�

TABLE IV. Exponent and pre-exponent factors of generalized
DSE relations �Eqs. �24� and �25��.

T �K� �1 108B� �2 107B�

226 0.84 2.80 0.72 4.07

228 0.85 2.04 0.71 2.97

230 0.84 1.94 0.72 2.03

232 0.83 1.83 0.73 1.52

FIG. 8. log10 imaginary part of dynamic shear vs log10 imagi-
nary part dynamic rotational viscosity ���� 226, ��� 228, ��� 230,
and ��� 232 K�. Inset: Linear behavior of relation between both
viscosities.
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On the other hand, the real and imaginary parts of the
rotational viscosity are expressed by

�rot� ��� = B���trans� ��1, �A3�

�rot� ��� = B���trans� ��2. �A4�

Particularly, by using the Kramers-Kronig relations for
the next complex quantities �rot

* ���, �trans
* ���, and Gs

*��� the
following expressions are obtained:

Gs���� = −
�

2

dGs�

d ln �
, �A5�

�rot� ��� = −
�

2

d�rot�

d ln �
, �A6�

�trans� ��� = −
�

2

d�trans�

d ln �
. �A7�

We propose to take Eq. �A3� as the starting point and we
obtain Eq. �A4�.

We assume that the real and imaginary parts of the shear
modulus in the high frequency wing are given by power
functions

Gs� = M1�m, �A8�

Gs� = M2�n. �A9�

Applying the operator

−
�

2

d

d ln �
�A10�

of both sides of Eq. �A3�, results

�rot� ��� = −
�

2

d�rot� ���
d ln �

= −
�

2

d

d ln �
B���trans� ��1,

�A11�

�rot� ��� = − B��1��trans� ��1−1�

2

d�trans�

d ln �
= B��1��trans� ��1−1�trans� .

�A12�

Now, using the Eqs. �A8� and �A9� as well as Eq. �16� the
following relations are obtained:

�trans� ��� = � M2

M1
����trans� ��, �A13�

� =
n − 1

m − 1
. �A14�

Replacing the above result into Eq. �A12� and comparing
with the last result with Eq. �A4�, the parameters �2 and B�
can be identified as

�2 = 1 − ��1 − �1� �A15�

and

B� = B��1� M2

M1
���1−1

. �A16�

As we can see, �2=�1, only of m=n but this is not, in
general, the case. It is noticed that it is not possible to obtain
Eq. �A3� from Eq. �A4� following a procedure analogous to
the former due to the fact that an equation does not exist
which is similar to Eq. �A11� for the real part of the rota-
tional viscosity.

APPENDIX B: EXPONENT AND PRE-EXPONENT
FACTORS FOR REAL AND IMAGINARY PARTS OF

DYNAMIC VISCOSITIES

The interconversion between the dynamic translational
viscosity and dynamic rotational viscosity was realized at a
high frequency, where the viscosities are decreased �Figs. 4
and 5�. In this range, we can assume that whereas real parts
of viscosities are given by power functions

�rot� = Br��
mr, �B1�

�trans� = Bt��
mt. �B2�

From both equations, the following relation is obtained:

�rot� =
Br�

�Bt��
�mr/mt�

��trans� ��mr/mt� �B3�

by comparison with Eq. �22�, we determine the interconver-
sion parameters from power functions parameters for dy-
namic viscosity.

TABLE V. Exponent and pre-exponent factors for real parts of
dynamic viscosities.

T �K� 226 228 230 232

mr −0.990 −0.990 −0.978 −0.965

mt −1.164 −1.162 −1.168 −1.553

101Br� 6.54 5.95 5.01 3.91

108Bt� 5.19 5.82 7.18 7.07

�1 �calc� 0.85 0.85 0.84 0.83

108B� �calc� 3.04 2.07 1.96 1.84

TABLE VI. Exponent and pre-exponent factors for imaginary
parts of dynamic viscosities.

T �K� 226 228 230 232

nr −0.533 −0.562 −0.582 −0.575

nt −0.736 −0.750 −0.780 −0.781

100Br� 1.46 1.03 0.78 0.49

107Bt� 4.88 3.96 4.17 3.38

�2 �calc� 0.72 0.75 0.75 0.74

107B� �calc� 3.97 2.09 1.62 1.42
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B� =
Br�

�Bt��
�mr/mt�

�B4�

and

�1 =
mr

mt
. �B5�

By the same way in imaginary parts and assuming that the
imaginary parts of dynamic viscosities are given by similar
power functions

�rot� = Br��
nr, �B6�

�trans� = Bt��
nt. �B7�

obtaining:

B� =
Br�

�Bt��
�nr/nt�

�B8�

and

�2 =
nr

nt
. �B9�

We can observe that the values obtained by these two
methods �see Tables IV–VI� are very close.
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